

1

ODTUG Kaleidoscope 2010, Session 10
Tuesday, June 29 - 4:45 PM - 5:45 PM

Using MySQL Meta Data Effectively

Dossy Shiobara, Panoptic.com

This presentation discusses what MySQL meta data is available including the 'mysql'
meta schema, the INFORMATION_SCHEMA (I_S) tables first introduced in MySQL
5.0 and extended in MySQL 5.1, storage engine specific INFORMATION_SCHEMA
tables, as well as techniques for writing your own INFORMATION_SCHEMA plug-ins.
MySQL also provides a number of SHOW commands that provide easily formatted
presentation of MySQL meta data. Dossy Shiobara will also discuss some of the
limitations and performance implications of the INFORMATION_SCHEMA.

Tags: meta data, INFORMATION_SCHEMA, SHOW commands, mysql schema, plugins

INTRODUCTION

Traditionally, MySQL users have used the
classic SHOW statements to access metadata, in
addition to the ‘mysql’ meta-database. However,
in MySQL 5.0, the INFORMATION_SCHEMA
was introduced, finally providing a uniform SQL
interface to this metadata. In subsequent
versions, the INFORMATION_SCHEMA has
grown to provide even more access to metadata.

This paper discusses what information is
available through the INFORMATION_SCHEMA
(sometimes abbreviated as I_S), the benefits of
having such a mechanism and what one should
be aware of when using it.

IN THE BEGINNING

Originally, in MySQL leading up to 5.0, system
metadata was only accessed through tables in the
‘mysql’ database or through SHOW statements.
Those familiar with MySQL have likely
encountered the ‘user’ table in the ‘mysql’
database before, which stores the relevant data
for MySQL’s access privilege system, or the

SHOW TABLES statement that lists the tables in
the currently active database.

While this initial implementation was adequate
for MySQL’s capabilities at the time, there are
limitations to this approach. Introducing new
types of metadata meant introducing new
keywords into the grammar of the query parser to
expose it. This is additional code to write and
maintain in sql_yacc.yy when extending the
functionality of MySQL.

BEHOLD, THE INFORMATION_SCHEMA

Other database software has addressed this
through metadata tables or read-only views;
Oracle has its data dictionary, Sybase and SQL
Server has its system catalog. Rather than come
up with its own convention, MySQL has instead
chosen to base its implementation around the
non-free ANSI/ISO SQL:2003 standard Part 11
“Schemata”[1] along with its own extensions to
accommodate MySQL-specific metadata.

2

WHY DO I NEED IT?

Suppose you’re not interested in extending the
functionality of MySQL yourself, and happy to
let other developers deal with the work involved
in extending the parser’s grammar with new
keywords. You’re in the large majority of
MySQL users. So, why is the information
schema important and how can it be useful to
you?

The INFORMATION_SCHEMA is useful because
it provides an interface to the system’s metadata
that can be accessed through standard SQL
statements. While you can write SQL queries
that use SHOW statements, you cannot perform
simple operations like joins on the results. You
cannot take the result of SHOW statements and
use them as values in a CREATE TABLE or
INSERT statement to store the values back into
the database. These are all things that you can do
when you have a standard SQL interface to your
metadata, but cannot do using MySQL’s SHOW
statements.

A standardized information schema
should make it easier for software tools
to support MySQL. Previously, they
needed to explicitly support MySQL’s
special SHOW statement interface, but
now they only need to accommodate
MySQL’s extensions to its information
schema implementation. This wider
opportunity for developers and DBAs
to have access to better tool support
increases the value and usefulness of
MySQL as a database.

If you are a developer of a MySQL
plugin, you can publish your own
metadata using the system_vars
member of your plugin descriptor. Then, you
can access this data through the
INFORMATION_SCHEMA
GLOBAL_VARIABLES table.

SO, WHAT’S IN IT?

In every release of MySQL 5.x, more and more
metadata is being published through the
INFORMATION_SCHEMA. Starting with
MySQL 5.0, the privilege system metadata that is
traditionally found in the ‘mysql’ database—the
‘user’, ‘db’, ‘host’, ‘tables_priv’, ‘columns_priv’
and ‘procs_priv’ tables—is now accessible
through the information schema. Additionally,
the structure of the database—its tables,
columns, views, index statistics, stored routines,
constraints and triggers—is also available. In
MySQL 5.1, information about plugins,
partitions, events, files, processes, system status
and variables were added. For a comprehensive
view of all the information that is available in the
INFORMATION_SCHEMA, you should consult
the MySQL documentation on it.[2]

Suppose we wanted to find all of the TEXT
columns in the current database. We can now do
this with a single query:

Previously, you would have to iterate over each
table in the database and use SHOW COLUMNS,
one at a time.

mysql> SELECT table_name, column_name, column_type
 FROM information_schema.columns
 WHERE table_schema = DATABASE()
 AND column_type LIKE '%text%';

+-------------+-------------------------+-------------+
| table_name | column_name | column_type |
+-------------+-------------------------+-------------+
COLUMNS	COLUMN_DEFAULT	longtext
COLUMNS	COLUMN_TYPE	longtext
EVENTS	EVENT_DEFINITION	longtext
PARTITIONS	PARTITION_EXPRESSION	longtext
PARTITIONS	SUBPARTITION_EXPRESSION	longtext
PARTITIONS	PARTITION_DESCRIPTION	longtext
PLUGINS	PLUGIN_DESCRIPTION	longtext
PROCESSLIST	INFO	longtext
ROUTINES	ROUTINE_DEFINITION	longtext
TRIGGERS	ACTION_CONDITION	longtext
TRIGGERS	ACTION_STATEMENT	longtext
VIEWS	VIEW_DEFINITION	longtext
+-------------+-------------------------+-------------+

3

Want a quick way to get a list of table names that
could use an OPTIMIZE TABLE performed on
them? Try this:

How about all the SQL stored procedures that
contain the phrase “FROM tablename” in its
procedure body?

These are just a few simple examples of what we
can now do using MySQL’s information schema.

THIS SOUNDS GREAT. WHAT’S THE
CATCH?

MySQL’s implementation of its information
schema, which you can find in
sql/sql_show.cc, can result in fairly
expensive operations. Retrieving certain data
from the information schema is done completely
in-memory, but others, such as enumerating table
columns, can result in MySQL needing to
perform disk I/O in order to build the metadata in
response. This can result in a very expensive
query.

What’s worse, some queries will acquire a
process-wide lock (LOCK_open) around
sections of the code that fulfills certain

information schema requests, at least in MySQL
5.1. It is because of this that I recommend users
be cautious about the kind and frequency of
information schema queries they make,
especially in a live, production environment.

BUT NOT ALL IS LOST!

However, don’t let this discourage you! MySQL
has a long history of gradual improvements over
time, and given the usefulness of the information
schema, optimizations will continue to be made.
Learn how to navigate it and what valuable
information you can get out of it now. When the
performance issues are resolved, you will be
prepared to take full advantage of them.

ACKNOWLEDGEMENTS

I’d like to thank everyone who has contributed to
make MySQL what it is today; the ODTUG
Kaleidoscope 2010 conference organizers,
particularly Ronald Bradford, for giving me the
opportunity to write this paper and present it;
Sheeri K. Cabral for her continued
encouragement and support.

I also want to thank my wife, Samantha, and
daughters Charlene and Suzanne. Without them,
none of this would matter.

REFERENCES

[1] MySQL 5.0 - Chapter 19. INFORMATION_SCHEMA Tables,
 http://dev.mysql.com/doc/refman/5.0/en/information-schema.html

[2] MySQL 5.5 - Chapter 19. INFORMATION_SCHEMA Tables,
 http://dev.mysql.com/doc/refman/5.5/en/information-schema.html

mysql> SELECT table_name
 FROM information_schema.tables
 WHERE table_schema = DATABASE()
 AND data_free > 0;

mysql> SELECT routine_name
 FROM information_schema.routines
 WHERE routine_definition
 LIKE '%FROM tablename%';

